The Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase
نویسندگان
چکیده
Upon seed germination, apical meristems grow as cell division prevails over differentiation and reach their final size when division and differentiation reach a balance. In the Arabidopsis root meristem, this balance results from the interaction between cytokinin (promoting differentiation) and auxin (promoting division) through a regulatory circuit whereby the ARR1 cytokinin-responsive transcription factor activates the gene SHY2, which negatively regulates the PIN genes encoding auxin transport facilitators. However, it remains unknown how the final meristem size is set, i.e., how a change in the relative rates of cell division and differentiation is brought about to cause meristem growth to stop. Here, we show that during meristem growth, expression of SHY2 is driven by another cytokinin-response factor, ARR12, and that completion of growth is brought about by the upregulation of SHY2 caused by both ARR12 and ARR1: this leads to an increase in cell differentiation rate that balances it with division, thus setting root meristem size. We also show that gibberellins selectively repress expression of ARR1 at early stages of meristem development, and that the DELLA protein REPRESSOR OF GA 1-3 (RGA) mediates this negative control.
منابع مشابه
Control of Root Meristem Size by DA1-RELATED PROTEIN2 in Arabidopsis1[C][W]
The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance an...
متن کاملControl of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.
The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance an...
متن کاملGibberellin Signaling in the Endodermis Controls Arabidopsis Root Meristem Size
Plant growth is driven by cell proliferation and elongation. The hormone gibberellin (GA) regulates Arabidopsis root growth by controlling cell elongation, but it is currently unknown whether GA also controls root cell proliferation. Here we show that GA biosynthetic mutants are unable to increase their cell production rate and meristem size after germination. GA signals the degradation of the ...
متن کاملUnique and Conserved Features of the Barley Root Meristem
Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Horde...
متن کاملThe Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication
The coordination of plant cell division and expansion controls plant morphogenesis, development, and growth. Cyclin-dependent kinases (CDKs) are not only key regulators of cell division but also play an important role in cell differentiation. In plants, CDK activity is modulated by the binding of INHIBITOR OF CDK/KIP-RELATED PROTEIN (ICK/KRP). Previously, ICK2/KRP2 has been shown to mediate aux...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010